2025-04-03

y'' - 2y' + y = 3sin(2x)

y'' - 2y' + y = 3sin(2x)

Step1: 특성방정식

r- 2r + 1 = 0

(r - 1)= 0

r = 1 (중근)

일반해 yh = (c1 + c2x)ex

Step2: 미정계수법

yp = A cos(2x) + B sin(2x)

yp' = -2A sin(2x) + 2B cos(2x)

yp'' = -4A cos(2x) - 4B sin(2x)

원 식에 대입

y'' - 2y' +y = 3sin(2x)

(-4A cos(2x) - 4B sin(2x) ) - 2(-2A sin(2x) + 2B cos(2x)) +(A cos(2x) + B sin(2x)) = 3sin(2x)

(-3A - 4B) cos(2x) + (4A - 3B - 3) sin(2x) = 0

(-3A - 4B) = 0

(4A - 3B - 3) = 0

A = -4B/3

A(-4B/3) - 3B = 3

B = -9/25, A = (-4/3)(-9/25) = 12/25

y = (c1+c2x)ex + (12/25) cos(2x) - (9/25) sin(2x)