2025-04-07

y''+2y' = 2x+5-e^(-2x)

y'' + 2y' = 2x + 5 - e-2x

Step1:

Solve y'' + 2y' = 0

characteristic equation: r2 + 2r = 0

r(r+2) = 0

r = 0 or r = -2

General solution:

yh = c1 + c2 e-2x

Step2: Find particular solution

1) 2x + 5:

yp1 = Ax2 + Bx

y' = 2Ax + B

y'' = 2A

y'' + 2y = 2A + 2(2Ax+ B) = 4Ax + 2B + 2A

4Ax + 2B + 2A = 2x + 5

4A = 2

A = 1/2

2A + 2B = 5

1 + 2B = 5

B = 2

yp1 = x2/2 + 2x

2) -e-2x:

yp2 = Ae-2x

y' = -2Ae-2x

y'' = 4Ae-2x

y'' + 2y' = 4Ae-2x - 4Ae-2x = 0

yp2 = Axe-2x

y' = Ae-2x - 2Ax-2x

y'' = -2Ae-2x - 2Ae-2x + 4Axe-2x = (4Ax - 4A)e-2x

y'' + 2y' = (4Ax - 4A)e-2x + 2(Ae-2x - 2Axe-2x) = (-2A)e-2x

-2Ae-2x =  -e-2x

A = 1/2

yp2 = xe-2x/2

Step3: General solution

y(x) = yh + yp1 + yp2 = c1 + c2 e-2x + x2/2 + 2x + xe-2x/2

y(x) = yh + yp1+ yp2 = c1 + c2 e-2x + x2/2 + 2x + xe-2x/2

댓글 없음:

댓글 쓰기