y'' + 2y' = 2x + 5 - e-2x
Step1:
Solve y'' + 2y' = 0
characteristic equation: r2 + 2r = 0
r(r+2) = 0
r = 0 or r = -2
General solution:
yh = c1 + c2 e-2x
Step2: Find particular solution
1) 2x + 5:
yp1 = Ax2 + Bx
y' = 2Ax + B
y'' = 2A
y'' + 2y = 2A + 2(2Ax+ B) = 4Ax + 2B + 2A
4Ax + 2B + 2A = 2x + 5
4A = 2
A = 1/2
2A + 2B = 5
1 + 2B = 5
B = 2
yp1 = x2/2 + 2x
2) -e-2x:
yp2 = Ae-2x
y' = -2Ae-2x
y'' = 4Ae-2x
y'' + 2y' = 4Ae-2x - 4Ae-2x = 0
yp2 = Axe-2x
y' = Ae-2x - 2Ax-2x
y'' = -2Ae-2x - 2Ae-2x + 4Axe-2x = (4Ax - 4A)e-2x
y'' + 2y' = (4Ax - 4A)e-2x + 2(Ae-2x - 2Axe-2x) = (-2A)e-2x
-2Ae-2x = -e-2x
A = 1/2
yp2 = xe-2x/2
Step3: General solution
y(x) = yh + yp1 + yp2 = c1 + c2 e-2x + x2/2 + 2x + xe-2x/2
y(x) = yh + yp1+ yp2 = c1 + c2 e-2x + x2/2 + 2x + xe-2x/2
댓글 없음:
댓글 쓰기